Board logo

标题: 机器学习 - 入门 [打印本页]

作者: vicky.yu    时间: 2022-9-13 09:38     标题: 机器学习 - 入门

机器学习使计算机能够从研究数据和统计信息中学习。

机器学习是迈向人工智能(AI)方向的其中一步。

机器学习是一种程序,可以分析数据并学习预测结果。

从何处开始?
在本教程中,我们将回到数学并研究统计学,以及如何根据数据集计算重要数值。

我们还将学习如何使用各种 Python 模块来获得所需的答案。

并且,我们将学习如何根据所学知识编写能够预测结果的函数。

数据集
在计算机中,数据集指的是任何数据集合。它可以是从数组到完整数据库的任何内容。

一个数组的例子:
[99,86,87,88,111,86,103,87,94,78,77,85,86]
一个数据库的例子:
Carname        Color        Age        Speed        AutoPass
BMW        red        5        99        Y
Volvo        black        7        86        Y
VW        gray        8        87        N
VW        white        7        88        Y
Ford        white        2        111        Y
VW        white        17        86        Y
Tesla        red        2        103        Y
BMW        black        9        87        Y
Volvo        gray        4        94        N
Ford        white        11        78        N
Toyota        gray        12        77        N
VW        white        9        85        N
Toyota        blue        6        86        Y
通过查看数组,我们可以猜测平均值可能约为 80 或 90,并且我们还可以确定最大值和最小值,但是我们还能做什么?

通过查看数据库,我们可以看到最受欢迎的颜色是白色,最老的车龄是 17 年,但是如果仅通过查看其他值就可以预测汽车是否具有 AutoPass,该怎么办?

这就是机器学习的目的!分析数据并预测结果!

在机器学习中,通常使用非常大的数据集。在本教程中,我们会尝试让您尽可能容易地理解机器学习的不同概念,并将使用一些易于理解的小型数据集。

数据类型
如需分析数据,了解我们要处理的数据类型非常重要。

我们可以将数据类型分为三种主要类别:

数值(Numerical)
分类(Categorical)
序数(Ordinal)
数值数据是数字,可以分为两种数值类别:

离散数据(Discrete Data)
- 限制为整数的数字。例如:经过的汽车数量。
连续数据(Continuous Data)
- 具有无限值的数字。例如:一件商品的价格或一件商品的大小。
分类数据是无法相互度量的值。例如:颜色值或任何 yes/no 值。

序数数据类似于分类数据,但可以相互度量。示例:A 优于 B 的学校成绩,依此类推。

通过了解数据源的数据类型,您就能够知道在分析数据时使用何种技术。

在下一章中,您将学习有关统计和分析数据的更多知识。

NumPy ufuncs
平均中位数模式

Python 参考手册
Python 实例
Python 测验

W3School 简体中文版提供的内容仅用于培训和测试,不保证内容的正确性。通




欢迎光临 赛捷软件论坛 (http://sagesoft.cn/bbs/) Powered by Discuz! 7.2