假设使用变量A作为决策树的根节点,把记录集s分为子类{s1,s2,…,sk},其中每个si={i=1,2,…k}中包括个属于类P的记录。那么,用于在所有的子类中分类的信息量为: 假设选择变量A作为分类节点,那么它的信息增量值一定大于其它信息增量值。变量A的信息增量为:Gain(A)=Info(S)-E(A) 信息增益可通过下式计算: 信息量: 期望熵: 信息增益:Gain(A)=Info(p,n)-E(A) 重复上述步骤,分别得到各个根节点,同时计算相应属性的信息增益值。最后,根据公式计算结果得到制造企业是否需要对该潜在的流失客户实施新的服务的决策树,如图1所示。 |